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Long-range radiative interaction between semiconductor quantum dots
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We develop a Maxwell–Schrödinger formalism in order to describe the radiative interaction mecha-
nism between semiconductor quantum dots. We solve the Maxwell equations for the electromagnetic
field coupled to the polarization field of a quantum dot ensemble through a linear non–local suscep-
tibility and compute the polariton resonances of the system. The radiative coupling, mediated by
both radiative and surface photon modes, causes the emergence of collective modes whose lifetimes
are longer or shorter compared to the ones of non–interacting dots. The magnitude of the coupling
and the collective mode energies depend on the detuning and on the mutual quantum dot distance.
The spatial range of this coupling mechanism is of the order of the wavelength. This coupling should
therefore be accounted for when considering quantum dots as building blocks of integrated systems
for quantum information processing.

PACS numbers: 71.36.+c,73.21.-b,78.67.Hc,03.67.-a

I. INTRODUCTION

Exciton–polaritons are the basic optical excitations of
any semiconductor system. The interband optical po-
larization of a semiconductor is never an isolated degree
of freedom. Rather, the exciton states are always cou-
pled to the electromagnetic field via the linear radiation–
matter interaction Hamiltonian. Exciton–polaritons are
the resulting eigenmodes of the Maxwell equations cou-
pled to the material equations describing the excitons
in a semiconductor structure. The polariton concept in
bulk semiconductors was first introduced by Hopfield1.
Bulk exciton–polaritons are mixed modes of one exci-
ton and one photon mode having the same momentum,
as imposed by translational invariance. This one–to–one
selection rule results into a strong mixing and an energy–
dispersion displaying the anticrossing typical of normal–
mode coupling2. In GaAs, the normal–mode splitting
at resonance is 16 meV, larger than the exciton binding
energy.

In systems with reduced dimensionality, such as quan-
tum wells and quantum wires, the partial breaking of
the translational symmetry allows coupling of excitons
to a continuum of photon modes. The polariton picture
is consequently modified and a polariton becomes a res-
onance of a discrete exciton state linearly coupled to a
photon continuum, analogously to a Fano resonance3. In
this case the importance of the coupling, expressed by
the magnitude of the polariton self–energy correction to
the bare exciton energy, is considerably smaller. In quan-
tum wells2,4,5,6,7, the polariton resonance implies a finite
exciton radiative lifetime which is of the order of 10 ps in
typical GaAs quantum wells, and a negligible shift of the
exciton energy. A similar effect is predicted in quantum
wires8,9,10.

When the dimensionality of the electromagnetic field
is also reduced, e.g. in semiconductor planar microcav-
ities, the one–to–one coupling typical of a bulk semi-
conductor is recovered and strongly–coupled polaritons
with full exciton–photon mixing characterize the optical

spectrum11,12,13,14.

The question naturally arises, whether the polariton
concept is of some relevance in the case of quantum dots
(QDs), where the electron–hole system is fully confined
in the three spatial dimensions. In this case we might
distinguish between two effects of the radiation–matter
coupling. The first is the self–energy of a single QD cou-
pled to the electromagnetic field, resulting in a finite ra-
diative lifetime and an energy shift of the QD levels. This
effect is well established and several theoretical estimates
of the radiative lifetime of QDs have been proposed in the
past years15,16,17. The second is the radiative coupling
between different QDs. This process might be depicted
as a multiple emission and reabsorption of a photon by
QDs in a many–QD system, eventually giving rise to col-
lective modes of several QDs. This picture implies that
the exciton state of a single QD is no longer an eigenstate
and excitation of one exciton in a QD would result in a
transfer of excitation to other QDs, similar to a system
of coupled harmonic oscillators. A similar effect has al-
ready been suggested and theoretically characterized in
the case of quantum well excitons localized by interface
disorder18,37.

The excitation transfer mechanisms between polariz-
able systems such as molecules or semiconductor QDs
are usually grouped into two categories, depending on
whether they occur via overlapping wave functions of
the spatially separated systems or via long–range inter-
actions. The propotype of these latter case is the electro-
static dipole–dipole interaction, frequently referred to as
Förster energy transfer19. As an example, the Förster
rate for the excitation transfer between two QDs has
been estimated20 in the range of 10−2 to 10−3 ps−1 for
InP QDs with interdot distance of 7 nm. This mecha-
nism has been experimentally characterized in the case
of closely spaced QD systems21. The important feature
of the Förster mechanism, however, is the dependence
of the transfer rate on the distance. Being a dipole–
dipole type interaction, its rate within Fermi golden rule
is proportional to the fourth power of the dipole mo-
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ment matrix element and decays as the sixth power of
the distance20. On a more general ground, in addition to
the original Förster scheme, all excitation transfer mech-
anisms based on electromagnetic interaction are expected
to be of some importance. The polariton mechanism
that we address here involves an excitation transfer me-
diated by the transverse electromagnetic field. Within a
perturbation picture, which considers only one emission–
absorption process, this mechanism results in the transfer
of electron–hole excitation between distant QDs medi-
ated by the emission and reabsorption of a propagat-
ing photon. The coupling strength of this process is
therefore expected to be small, if compared to other pro-
posed coupling mechanisms which involve tunneling of
the electron–hole wave function22,23,24, or even to the
Förster mechanism at short distance. This is basically
due to the small absorption cross section of typical semi-
conductor QDs. However, the polariton coupling is also
expected to have a long spatial range, of the order of a
few photon wavelengths. Its rate turns out to be pro-
portional to the square of the dipole moment matrix el-
ement and decays as the inverse of the distance, as the
transfer is mediated by a propagating field in two di-
mensions. In addition, as for the Förster mechanism, it
requires that the two energy levels involved in the ex-
citation transfer have resonant spectra. Although, as it
will turn out, typical transfer rates derived here are in
the range of 10−3 to 10−4 ps−1, because of its spatial
range the mechanism we study must be considered as
complementary to the Förster coupling. In particular
this long–range coupling might play an important role
in the increasingly sought applications of QDs in quan-
tum information processing25,26,27,28,29,30,31. In presence
of radiative interaction, in fact, even very distant QDs
cannot be considered as isolated systems.

In this work, in order to describe the radiative cou-
pling mechanism, we develop a full Maxwell–Schrödinger
formalism for a system of many QDs coupled to the elec-
tromagnetic field. We model a QD having cylindrical
shape and compute the ground electron–hole pair state
within the effective mass scheme. We numerically solve
the Maxwell equations for the electromagnetic field cou-
pled to the polarization field of a QD ensemble, in order
to compute the polariton resonances of the system. The
linear susceptibility is obtained by means of the standard
linear response theory. We initially address the case of
two QDs and inspect how the coupling depends on the
detuning and the mutual QD distance. Afterwards, we
consider a system of many QDs randomly distributed
on a plane and we determine the eigenenergies of the
coupled equations. The collective modes of the system
display modified radiative lifetimes, some of them being
strongly sub–radiant or super–radiant with respect to the
bare QDs lifetime. This is analogous to the case of polari-
tons in multiple quantum wells32,33, although the QDs in
our case are randomly distributed in space rather than
ordered in a superlattice. We apply our model to the re-
alistic cases of Stranski–Krastanov–grown InAs QDs and

CdSe QDs resulting from interface fluctuations in narrow
quantum wells. In the CdSe case the effect of radiative
coupling is sizeable and a considerable number of collec-
tive modes have lifetimes about twice as long or short
than the uncoupled case.

The article is organized as follows. In Sec. II, start-
ing form the Maxwell equations and a linear non-local
susceptibility, we analitically derive the eigenmode equa-
tions that holds in presence of radiative coupling. Sec.
III contains the results of the numerical diagonalization
of the problem in the cases of two– and many–QD sys-
tems, followed by a discussion of the computed data. In
Sec. IV we present some concluding remarks. Finally,
Appendix A contains the details of the QD model used
to derive the electron–hole pair wave functions that were
used in this work, while Appendix B contains the detailed
derivation of the radiative coupling tensor between two
QDs.

II. THEORY

The semiclassical model of QD interband excitation
in interaction with the electromagnetic field is based on
the solution of the Maxwell equations coupled to a non-
local linear susceptibility which accounts for the inter-
band optical transition. This is done in full analogy with
the polariton formalism in bulk semiconductors and het-
erostructures2,4. We restrict in what follows to the tran-
sition between the semiconductor ground state and the
ground electron–hole pair state (that is the first excited
state) in each QD. Within the effective mass approach,
the linear susceptibility tensor (in what follows, tensors
are indicated by a “hat”) deriving from the linear re-
sponse theory34 is

χ̂ (r, r′, ω) =
µ2

cv

h̄

∑

α

Ψα (r, r) Ψ∗
α (r′, r′)

ωα − ω − i0+





1 0 0
0 1 0
0 0 0



 .

(1)
The susceptibility is non–local in the three spatial co-
ordinates, as expected from the breaking of traslational
invariance. In Eq. (1), µcv is the dipole matrix element
of the interband optical transition2. The quantities h̄ωα

and Ψα (re, rh) are respectively the electron–hole pair en-
ergy and wave function in the α–th dot. We assume an
electron–hole pair wave function which is factorized in its
electron and hole parts, thus neglecting the electron–hole
Coulomb correlation. It is reasonable to assume35,36 that
for strongly confined systems the Coulomb correlation in-
duces only a moderate quantitative change in the optical
transition probability amplitude. Given the very sim-
ple description of the QD in this work, this quantitative
effect can be accounted for by adjusting the interband
matrix element in order to reproduce e.g. the single–QD
radiative recombination rate. Note that in expression (1)
the wave function Ψα is evaluated at re = rh, accord-
ing to the effective mass theory of the interband opti-
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cal transition2. By introducing the susceptibility tensor
(1) in this particular matrix form,we are implicitely con-
sidering the electron–heavy–hole optical transition in a
semiconductor with cubic lattice symmetry. In this case,
in analogy with a quantum well37, only the x– and y–
components of the interband electron–hole polarization
vector are coupled to the electromagnetic field, resulting
in the particular shape of the susceptibility tensor (1).
It is therefore possible to analytically solve the uncou-
pled z–component of the Maxwell equations and to ef-
fectively reduce to a two–dimensional problem. In this
planar geometry there are two independent states of the
interband polarization vector, that correspond to exci-
tons with spins oriented along the x– and y–direction,
respectively. By using simple Lorentz resonances in (1),
we assume that the nonradiative lineshape of each QD
is a Dirac delta function. Recently it was found that
non–perturbative coupling of the exciton with acoustic
phonons is responsible for a broad phonon–assisted con-
tribution to the nonradiative QD lineshape36,38,39. How-
ever, at low temperatures the phonon–assisted part of the
line tends to be small, especially for low quantum con-
finement. The zero–phonon part of the line on the other
hand is only affected by the so called “pure dephasing”.
It has been recently shown that pure dephasing in QDs
is almost exclusively due to the radiative recombination
rate40 which is also an outcome of the present approach.
We will restrict to a simple Lorentz lineshape for the un-
coupled QD and assume that our results apply to the
zero–phonon part of the interband excitation.

R

h

Rαβ
z y

x

  

R

h

Rαβ
z y

x

  

FIG. 1: Schematic diagram of the cylindrical dot ensemble.
h is the height of a QD in the z–direction, R its radius in the
(x, y)–plane, and Rαβ is the distance between the centers of
the two QDs.

The QD we are considering has cylindrical shape with
radius R and height h and is assumed to have a small
aspect ratio h/R, as occurring for most real QD sys-
tems41,42,43,44,45. We are therefore treating a quasi two–
dimensional system with the QD lying on the (x, y)–
plane, as illustrated in Fig. 1 in the case of two QDs
labeled α and β. In a cylindrical coordinate frame cen-
tered on the QD, the electron–hole wave function for the
α–th QD can be written as

Ψα (r, r) = Φα,e(φ, ρ, z)Φα,h(φ, ρ, z) (2)

=
[

eimα,eφfα,e(ρ)hα,e(z)
]

·
[

eimα,hφfα,h(ρ)hα,h(z)
]

.

The details of the calculation of the electron and hole
wave functions are given in Appendix A.

The Maxwell equation for the electric field E , expressed
in the space and frequency domain, can be written as

∇ ∧ ∇ ∧ E (ρ, z, ω) − ω2

c2
[ǫ∞E (ρ, z, ω) (3)

+4π

∫

dρ′dz′χ̂ (ρ,ρ′, z, z′, ω) · E (ρ′, z′, ω)

]

= 0 ,

where we distinguish between the z– and the in–plane ρ

directions. In what follows we omit the ω–dependence
in the notation for the electric field, unless required.
In Eq. (3) we assumed a uniform dielectric background
with dielectric constant ǫ∞, which models the semicon-
ductor matrix surrounding the QD. The in–plane and
z–components of the electric field are defined as E =
(E, Ez). Since Ez is not coupled to the polarization
field, it can be easily eliminated from Eq. (3). The
Fourier transform to reciprocal in–plane space is defined
as E (ρ, z) =

∑

k
Ek (z) exp [ik · ρ]. After some algebra,

the resulting equation for the in–plane component Ek(z)
reads

−
(

1 +
1

k2
z

∂2

∂z2

)(

k2
0 − k2

y kxky

kxky k2
0 − k2

x

)

Ek (z) = (4)

4π
k2
0

ǫ∞

∑

k′

∫

dz′χ̂k,k′ (z, z′) · Ek′ (z′) ,

where

kz =
√

k2
0 − k2 (5)

k0 = (ω/c)
√
ǫ∞ (6)

are the z–component of the photon wave vector and the
photon dispersion respectively. In what follows, the ω–
dependence of the various quantities in the equations is
implicitely contained in their k–dependence through Eqs.
(5) and (6). In Eq. (4) the susceptibility χ̂k,k′ (z, z′) is
now a rank–2 tensor acting on the (kx, ky)–plane, ob-
tained by Fourier transforming to k–space the (x, y)–
minor of the tensor (1). Eq. (4) can be solved using
the scattering approach proposed in Ref.46. The back-
ground Green’s function of the system is defined as the
solution of the left–hand side of Eq. (4) with an inho-

mogeneous term Îδ (z) on the right–hand side and with
outgoing boundary conditions. This Green’s function can
be derived analytically and reads

Ĝk (z) =
i

2k2
0kz

(

k2
0 − k2

x −kxky

−kxky k2
0 − k2

y

)

exp [ikz |z|] . (7)

As already mentioned above, the basis of this two by two
tensor corresponds to the x and y directions of the electric
field polarization and of the interband optical polariza-
tion. The nondiagonal terms have their physical origin in
the long–range part of the electron–hole exchange inter-
action, which is contained in a full Maxwell–Schrödinger
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formalism2. For a single QD having cylindrical symme-
try, the nondiagonal terms average to zero when evalu-
ating the optical transition amplitude, as expected in an
isotropic system. If the system displays an anisotropy,
as is the case for two or more QDs, these nondiagonal
terms are responsible for the longitudinal–transverse or
fine structure splitting of the resulting polariton modes.
The Green’s function (7) allows to express Eq. (4) in
terms of a Dyson equation as follows

Ek (z) = E
0
k

(z) + 4π
k2
0

ǫ∞
(8)

×
∑

k′

∫

dz′dz′′Ĝk (z − z′) · χ̂k,k′ (z′, z′′) ·Ek′ (z′′) ,

where E
0
k

is the solution of the free propagating field
in the dielectric background, namely in the absence of
the resonant non–local susceptibility. As already pointed
out, we consider cylindrical QDs whose thickness in the
z–direction is very small compared to their size in the
(x, y)–plane. In this case we can approximate the z–
dependence of the electron–hole pairs wave functions Ψα

with a Dirac–delta function. This allows us to rewrite
Eq. (8) in the simpler form

Ek = E
0
k

+ 4π
k2
0

ǫ∞

µ2
cv

h̄

∑

k′,β

ψβ,kψ
∗
β,k′

ωβ − ω − i0+
Ĝk ·Ek′ , (9)

where all the quantities are defined at the (x, y)–plane
position z = 0. Here, ψβ,k is the two–dimensional Fourier

transform of ψβ(ρ) = ei(mβ,e+mβ,h)φfβ,e(ρ)fβ,h(ρ), that
is the in–plane projection of the electron–hole pair wave
function in the β–th QD. If Rβ is the position of the QD
in the chosen coordinate frame, then

ψβ(ρ) = ϕβ(ρ − Rβ) , (10)

where ϕβ(ρ) is the β–th QD wave function centered at
the origin of the coordinate frame. The Fourier transform
in k–space then reads

ψβ,k = ϕβ,k exp [ik ·Rβ] . (11)

Here, because of the cylindrical simmetry of the wave
function ϕβ(ρ),

ϕβ,k =
1

2π

∫

dρϕβ(ρ) exp (ik · ρ) (12)

=

∫ ∞

0

dρ ρϕβ(ρ)J0(kρ) .

We now project Eq. (9) onto the set of pair wave func-
tions ψα,k. The result is

Eα = E
0
α +

∑

β

Ĝαβ

ωβ − ω − i0+
Eβ , (13)

where

Eα =
∑

k

ψα,kEk , (14)

Ĝαβ = 4π
k2
0

ǫ∞

µ2
cv

h̄

∑

k

ψα,kĜkψ
∗
β,k . (15)

Here, as above, the ω–dependence enters these expres-
sions through the definitions of k0, kz, and Ĝk. The QD
coupling matrix Ĝαβ is explicitely derived in Appendix
B. In particular, in Eq. (B2) the in–plane momentum k
is integrated over the whole range, including both radia-
tive modes with k < k0 and surface modes with k > k0.
These latter modes, which are evanescent in the z di-
rection, span the largest part of the exchanged photons
phase space and are thus ultimately responsible for the
transfer mechanism we are describing. The set of func-
tions ψα,k is in general a non–complete set and there-
fore, by making this projection, we lose information on
the value assumed by the electric field Ek in all k–space.
Formally, once the quantities Eα have been computed,
the electric field in all k–space could in principle be re-
constructed by solving again Maxwell equations, using
the values Eα at each QD as source terms. As it will
become clear later, however, the projected values of the
electric field are sufficient for the purpose of the present
analysis, which is to compute the polariton resonances of
the system. It clearly emerges from the structure of Eq.
(13) that in the absence of coupling, the input field is
scattered by each QD individually. Radiative coupling is
responsible for the reabsorption of the scattered photons
by other QDs, through the terms Ĝαβ with α 6= β. By
neglecting these nondiagonal terms we obtain a Dyson
equation for a single QD

Eα = E
0
α +

Ĝαα

ωα − ω − i0+
Eα , (16)

where Ĝαα = ÎGα (Î, being the 2 by 2 unit matrix), and

Gα = i
2π2µ2

cv

h̄ǫ∞

∫ ∞

0

dk|ψα,k|2
k(2k2

0 − k2)

kz
. (17)

Eq. (16) can be solved straightforwardly. The quantity
−Gα is the radiative self energy of the α-th QD, with
its real and imaginary parts describing the radiative en-
ergy shift and radiative linewidth (inverse lifetime) re-
spectively. As discussed later, this diagonal approxima-
tion already implies an inhomogeneous distribution of the
Gα, due to the size distribution of the QDs.

In this work we are interested in the effect of radiative
coupling between distant QDs. To this purpose, we seek
for the solutions of the coupled Dyson equation (13). The
polariton resonances of the multiple–QD system are then
the poles of the homogeneous set of equations obtained
by setting E

0
α = 0 in Eqs. (13). We compute these poles

numerically within the exciton–pole approximation4,5,6,7,
which consists in replacing the ω–dependence of Ĝαβ ten-
sor by an average electron hole energy h̄ω0. This approxi-
mation is generally valid when the dielectric medium does
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FIG. 2: QD transition energy distribution (full line, arbitrary
units). The asymmetry with a more pronounced high–energy
tail is due to R−2–dependence of the α–th QD confinement en-
ergy on the QD radius Rα, the radii being Gauss–distributed.
The (x, x)-component of the coupling energy tensors ℜ{Gα}
(dashed), ℜ{Gxx

αβ} (dotted), and ℑ{Gα} (dot-dashed), for two
QDs labelled α and β, is plotted as a function of h̄ω.

not present sharp resonances, as is the case in the present
model where the QDs are embedded in a constant dielec-
tric background. In order to check the validity of this
assumption, we evaluated the ω–dependence of the cou-
pling tensor Ĝαβ for a pair of QDs and checked that all
its components are essentially constant over the energy
interval corresponding to a typical inhomogeneous QD
distribution. Some of these components are plotted in
Fig. 2 as a check. Complex eigenenergies Ωn = ∆n + iΓn

are obtained, corresponding to collective radiative modes
of the QD ensemble. The number of these poles is twice
the number of QDs, corresponding to the two indepen-
dent states of the interband polarization vector. The
real part of the n–th eigenvalue ∆n induces a radiative
shift with respect to the energies of the non–interacting
dots, while the imaginary part Γn represents the radia-
tive recombination rate of the n–th collective mode of the
system.

III. NUMERICAL RESULTS

In the first part of this section we will address a two–
QD system, in order to establish how the radiative cou-
pling mechanism depends on the detuning and on the
mutual QD distance. Here, the detuning is defined as
the difference between the optical transition energies of
the two QDs. In the second part, we will discuss the
results obtained for an ensemble of several dots. In or-
der to have a quantitave estimate of the effect, we will
show results relative to the realistic cases of an InAs QD
ensemble35,43 and of a CdSe one47, which differ from each

other for the values of the dipole matrix element µcv and
for the QDs spatial density in typical samples.
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FIG. 3: Imaginary (a) and real (b) part of the energy poles as
a function of the detuning between two QDs, at fixed distance
Rαβ = 50 nm. The energy scale is relative to the case of InAs
QDs with µ2

cv = 480 meV/nm3 and a radius of the cylinder
of about 10 nm. Note that for small detuning the four poles
are well separed in energy, so that in (a) two sub–radiant and
two super–radiant states are distinguishable.

We first consider the case of two QDs. The QDs are
assumed of cylindrical shape. The electron and hole wave
functions are calculated within the effective mass ap-
proximation, assuming a finite barrier at the QD bound-
aries (see Appendix A). The cylindrical shape enables us

to analitically derive the elements of the Ĝαβ tensor in
Eq. (13) and simplifies our numerical task. The detun-
ing is changed by varying the size of one of the QDs. In
Fig. 3 the imaginary (a) and the real (b) part of the poles
of Eq. (13) (that is, Γn and ∆n respectively) are plotted
versus the detuning h̄δω = h̄(ω1−ω2) of the two QDs, at
fixed distance. The energy scale is relative to the physi-
cal parameters of Stranski–Krastanov grown InAs QDs,
that is a dipole matrix element µ2

cv = 480 meV/nm
3
,

corresponding to a Kane energy of 22 eV48, and a radius
of the cylinder of about 10 nm. The numerical simula-
tions show that no appreciable coupling effect is observed
for large detuning, as expected. On the other hand, for
small detuning the energies of the four poles are well dis-
tinguished. In particular, if we look at Γn in Fig. 3(a), we
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FIG. 4: Imaginary (a) and real (b) part of the energy poles as
a function of the distance between two QDs, at zero detuning.
The energy scale is the same as in Fig. 3. The oscillatory
nature of the interaction as a function of distance, according
to the Bragg or anti–Bragg condition, clearly appears.

can see that two sub–radiant and two super–radiant states
are present. The two states with small Γn, thus, decay in
a time much longer than the two others. The computed
energy shift with respect to non–interacting dots is of the
same order of Γn, that is of the order of 1 µeV. Such an
energy shift is negligible if compared to the typical in-
homogeneous broadening of a QD ensemble. The main
consequence of radiative coupling is thus the effect on the
lifetimes of the collective modes of the system. Fig. 4 dis-
plays the dependence of the interaction on the distance
between the QDs. The imaginary (a) and the real (b)
part of the poles oscillate as a function of the distance
between the two dots. The oscillations originate from in-
terference effects. At distances which are multiple of the
half wavelength, Bragg or anti–Bragg conditions are sat-
isfied and the oscillations display a maximum or a node,
respectively. Fig. 4 illustrates the long-range character
of this radiative coupling mechanism. The magnitude of
the coupling, expressed as the envelope of the curves in
Fig. 4 (a) and (b), can be inferred from Eq. (B4) and de-
creases as (Rαβ)−1, where Rαβ is the distance between
the dots. As already pointed out, this dependence is
much slower than the characteristic (Rαβ)−6 dependence
of the Förster coupling19,20. It should be pointed out

that our theory makes use of the Coulomb gauge for the
Maxwell equations and in particular for the dipole Hamil-
tonian from which the linear susceptibility is derived. In
this limit, only transverse fields are considered and the
electrostatic interaction, which is related to the instan-
taneous longitudinal part of the electromagnetic field, is
excluded from the treatment49. In a very recent work50,
the same process of energy transfer by emission and re-
absorption of a photon has been described in the instan-
taneous limit, by using second order perturbation theory
for the derivation of the transfer rate, without introduc-
ing the Maxwell equations. In this limit, the interaction
turns out to decay exponentially with the distance, a re-
sult which is well expected as the radiative nature of the
interaction is neglected.
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FIG. 5: (a) Histogram representing the energy distribution
of the single QD radiative rates, expressed as the imaginary
part of the single QD radiative self–energy γα = −ℑ{Gα}. (b)
Two–dimensional histogram of the distribution of the real and
imaginary parts of the single–QD radiative self–energy.
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Now that the features of the radiative coupling mech-
anism have been clarified, we consider the case of a
large number of interacting QDs. The same emission–
absorption mechanism that couples a pair of dots can
now involve several QDs and the transfer of excitation
between them results in collective modes analogous to
the ones previously described, that is, sub–radiant or
super–radiant if compared to the excited states of the
non–interacting dots. As a first example, we continue
to use the parameters of InAs QDs, which are randomly
distributed in the (x, y)–plane, with a physical density of
300 QDs/µm2. In a real situation, the dots have differ-
ent shape, size and composition causing the inhomoge-
neous energy broadening of the QD luminescence spec-
trum. To simulate this broadening, we introduce a Gauss
distributed dot size centered at dot radius R = 10 nm,
with a standard deviation of δR = 1 nm. This variance
in size induces a variation of the confinement energy h̄δω
which is proportional to δR/R3 as implied by the energy
quantization of a particle in a box. This energy varia-
tion is what finally produces the inhomogeneous energy
distribution of the QDs. The choice δR = 1 nm, given
our simple model for the QD wave functions, results in
an inhomogeneous broadening of about 15 meV, as seen
in Fig. 2. The asymmetry of this distribution, with a
more pronounced high–energy tail, is simply related to
the R−3–dependence of the confinement energy variation
and to the Gauss assumption for the distribution of QD
sizes. The same size fluctuation is also responsible of a
variation of the QD optical matrix element31 and conse-
quently of both its radiative shift and lifetime, via Eq.
(16) and the single–dot self–energy (17). The numeri-
cally computed radiative energy shifts are of the order of
a few µeV, thus negligible if compared to the QD inho-
mogeneous energy broadening. They are therefore irrel-
evant to the present discussion. The imaginary part of
the single–dot self–energy is on the contrary what gives
the inhomogeneous distribution of radiative linewidths
γα = −ℑ{Gα}. Their distribution is plotted in Fig. 5(a).
Finally, Fig. 5(b) shows a two-dimensional histogram of
−ℜ{Gα}, and −ℑ{Gα}, showing the correlation between
radiative shift and radiative broadening resulting from
the present model. In a realistic situation31, a variation
of the dipole moment is not only induced by size fluc-
tuations. Other factors such as QD shape, strain and
piezoelectric fields, and indium concentration within the
QD body produce a variation of dipole moment even for
a fixed QD size. The 20% variance of the dipole moments
derived in Ref31 is significantly larger than the one ob-
tained here from size fluctuations (approx. 3% for the
InAs case). However we note that the inhomogeneous
broadening of the sample by Borri et al. is also larger
than the one considered here, presumably due to an even
larger QD–size fluctuation. Introducing a larger size fluc-
tuation in the present model would partly account for the
observed dipole–moment fluctuation. Our final result for
a radiatively–coupled QD ensemble however (see discus-
sion below and Figs. 6, and 7), predicts an even broader

distribution of radiative linewidths which might be at
least partly responsible for the measured dipole moment
distribution.
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FIG. 6: Logarithmic scale histogram expressing the number
of collective modes as a function of the real and imaginary
part of the complex energy poles of an InAs QDs ensemble.
The physical parameters of the QDs are the same as in Fig. 3
and their density is 300 QDs/µm2. A fraction of the QDs
shows however a large radiative shift.

We compute the collective modes of an ensemble of 100
QDs by finding the complex poles of Eq. (13). We re-
peat this procedure for many random realizations of the
system. Provided the system size is larger than the wave-
length, we expect this configuration average to give the
same results as a simulation over a larger spatial domain.
This is true because of the fall–off scale computed in
Fig. 4. In particular, the occurrence of quasi–degenerate
QD pairs within a given realization has a finite though
small probability. Repeating the simulation over many
randomly generated configurations finally allows to sam-
ple over a large enough number of such quasi–degenerate
cases and produces a significant statistics. We plot in
Fig. 6 an histogram, on a logarithmic scale, of the real
and imaginary parts of the computed energy poles. Most
of the collective modes lie on the curve determined by
the distribution of non–interacting QDs displayed in Fig.
5(b), due to the large detunings that are induced by the
inhomogeneity of the QD ensemble. Nevertheless, for
a small fraction of the states a large radiative shift is
achieved, as a result of the coupling. We also point out
that the deviation from the non–interacting QDs case is
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more pronunced in correspondence of the center of the
QD inhomogeneous line. The reason is that, as already
stated, the radii of the QDs are Gauss–distributed around
a mean value. Most of the QDs fall in this energy region
and consequently small values of the detuning are more
likely to occur.
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FIG. 7: The same histogram of Fig. 6, but for GaAs
QDs with µ2

cv = 780 meV/nm3 and a physical density of
1000 QDs/µm2. In this case radiative shifts up to one or-
der of magnitude larger than in the case of InAs QDs are
obtained as an effect of the coupling.

For different materials, one can observe larger radiative
coupling effects. In Fig. 7 we show the histogram ob-
tained for a CdSe QD sample. The physical parameters
for this case are a spatial density of 1000 QDs/µm2 and

a dipole matrix element value of µ2
cv = 780 meV/nm

3
.

Once again the histogram results from many realization
of the sample, with randomly distributed QDs, having
ramdomly Gauss–distributed size. In this case the de-
viation from the noninteracting case is more pronounced
because of the higher QD density and of the larger dipole
matrix element µcv. A radiative shift of a few µeV is
achieved, that is one order of magnitude larger with re-
spect to the case of InAs QDs. In this case, some of the
collective modes have vanishing radiative rates, showing
how the radiative coupling can profoundly change the
dephasing rates of many QD systems.

IV. CONCLUSIONS

We have shown that QDs in a sample cannot in prin-
ciple be considered as isolated systems. The radiative
coupling between QDs causes the emergence of collective
modes. By comparing their lifetimes with the ones of
the excited state of an isolated QD, we can classify these
modes into sub–radiant and super–radiant. We find the
effect on the radiative decay–rate to be of the order of
1 µeV. This effect strongly depends on the dipole matrix
element of the material that constitutes the QDs and on
their spatial density. For a very dense QD sample this
effect should be observable as a non–exponential decay of
the photoluminescence signal. Despite its small size, the
addressed mechanism acts over wavelength distance, so
that two QDs that are a few hundreds of nanometers far
from each other can radiatively interact. Semiconductor
QDs are being increasingly advertised as the ideal build-
ing blocks of the future technology for quantum informa-
tion processing. These proposals are often based on pairs
of identical QDs27 or on pairs of QDs in which a degen-
eracy occurs between different excited levels20 and often
take advantage of excitation transfer processes. More-
over, it is likely that a solid state implementation of a
quantum information system would be constituted of a
great number of (nearly) identical, independent quan-
tum gates, possibly located at submicron distance from
each other. In all these situations where levels of dif-
ferent QDs are nearly degenerate, our result shows that
excitation transfer by radiative coupling can occur over
long distances. The radiative coupling mechanism that
we describe might therefore be relevant in determining
the excitation transfer dynamics of these systems.
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APPENDIX A: CARRIER WAVE FUNCTIONS

Due to the symmetry of the problem, in the following
we will consider a cylindrical coordinate system (φ, ρ, z).
The in–plane radius of the cylindrical QD is R, and its
height in the z–direction is h. The effective mass Hamil-
tonian operator which describes the carrier (electron or
hole) in the QD is

H = − h̄
2
∇2

2mc
+ V (ρ, z) , (A1)
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where mc is the effective mass of the carrier and V (R, z)
describes the band profile for the QD, that is

V (ρ, z) =

{

0 , ρ < R and |z| < h/2
V , elsewhere

. (A2)

Three assumptions allow to simplify the problem: (i)
we assume that the problem is separable, namely the
wave–function can be written as

Φ(φ, ρ, z) = eimφf(ρ)h(z) , (A3)

where m is a positive integer representing the azimuthal
quantum number; (ii) we assume that the effective mass
of the carrier is the same in the QD and in the surround-
ing medium; (iii) we rewrite the Hamiltonian operator
as

H = H0 +H1 , (A4)

H0 = − h̄
2
∇2

2mc
+ U(ρ) +W (z) , (A5)

H1 = V (ρ, z) − U(ρ) −W (z) . (A6)

with

U(ρ) =

{

0 , ρ ≤ R
V , ρ > R

, (A7)

W (z) =

{

0 , |z| ≤ h/2
V , |z| > h/2

. (A8)

H1 is considered as a small perturbation, because it is
nonzero only in regions of space where the R– and z–
confined wave–functions assume very small values.

By neglecting H1, the problem becomes separable. In
the z–direction we reduce to the problem of the one–
dimensional square potential. Because of the symmetry
of the problem, we find both even and odd solutions.

The even solution is

h(z) =







N cos(kz) , |z| < h/2

N cos(kh/2)e−k′(z−h/2) , z > h/2

N cos(kh/2)ek′(z+h/2) , z < −h/2
, (A9)

where k′ =
√

2mcV/h̄
2 − k2 and N is a normalization

factor. The conditions of continuity of the solution and
of its derivative require that k verifies the equation

k tan

(

kh

2

)

= k′ . (A10)

The odd solution is

h(z) =







N sin(kz) , |z| < h/2

N sin(kh/2)e−k′(z−h/2) , z > h/2

−N sin(kh/2)ek′(z+h/2) , z < −h/2
.

(A11)
In this case imposing the continuity at the QD boundaries
implies

k cot

(

kh

2

)

= −k′ . (A12)

Eqs. A10 and A12 result in a discretization of the wave
vector, which will be labeled by n.

The radial part of the Scrödinger equation takes the
form of a Bessel equation

f ′′(R) +
1

R
f ′(R) +

(

A− 2mc

h̄2 U(R) − m2
c

R2

)

f(R) = 0 .

(A13)
Solutions of this equation are the Bessel functions. In
the QD the wave function must be well defined at R = 0,
while outside of the QD we look for exponentially de-
caying solutions, as required for a confined state. These
requirements are satisfied by first kind Bessel functions
and first Hankel functions with imaginary argument, re-
spectively. We obtain

f(ρ) =

{

N ′Jm(qρ) , ρ < R
N ′Jm(qρ)H1

m(q′ρ)/H1
m(q′R) , ρ > R

,

(A14)

where q′ = i
√

2mcV/h̄
2 − q2, q2 < 2mcV/h̄

2 and N ′ is

a normalization factor. The conditions of continuity are
achieved if q satisfies the equation

q
Jm−1(qR) − Jm+1(qR)

Jm(qR)
= q′

H1
m−1(q

′R) −H1
m+1(q

′R)

H1
m(q′R)

,

(A15)
resulting in the discretization of q, which we label by
l. The problem has therefore three quantum numbers,
namely l, m and n.

We have evaluated, at the first order of perturbation,
the error introduced by neglecting H1. This error is less
than 1% for the confined functions, that is negligible also
considering the other approximations made.

The excitonic wave–function is the product of the
ground–state wave–functions of electron and hole,
namely the functions corresponding to l = 1, m = 0
and n = 1. A first improvement of the model, aimed
at taking into account the Coulomb interaction, would
consist in a variational approach based on a linear super-
position of (l,m, n)–states with the coefficients chosen to
minimize the Coulomb interaction.

APPENDIX B: QD COUPLING TENSOR

Using the expression (11) for the electron–hole pair

wave function in k–space, the coupling tensor Ĝαβ in
Eq. (15) becomes

Ĝαβ = 4π
k2
0

ǫ∞

µ2
cv

h̄

∑

k

ϕα,kϕ
∗
β,kĜkexp [−ik ·Rαβ ] ,

(B1)
where Rαβ = Rα − Rβ is the distance vector between
QDs α and β. Turning the sum into an integral, Eq. (B1)
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can be written as

Ĝαβ = i
2π

h̄

µ2
cv

ǫ∞

∫ ∞

0

dk
k

kz
ϕα,kϕ

∗
β,k (B2)

×
∫ 2π

0

dφ

(

k2
0 − k2 cos2 φ −k2 sinφ cosφ

−k2 sinφ cosφ k2
0 − k2 sin2 φ

)

× exp [−ikRαβ cos(φ− θαβ)] , (B3)

where φ and θαβ are the angles that the vectors k and
Rαβ respectively form with the x–axis of the chosen co-

ordinate frame. For each QD pair (α, β) we perform a
rotation of the 2 × 2 matrix in Eq. (B2) by an angle

θαβ . The rotation matrix is R̂θαβ
. In the new coor-

dinate frame the two QDs lie on the x–axis. In the
rotated frame the expression for the new coupling ten-
sor Ĝ′

αβ = R̂θαβ
ĜαβR̂

−1
θαβ

is identical to Eq. (B2), with

φ − θαβ replacing φ everywhere except in the argument
of the exponential. The angular integration can be per-
formed analytically and results in a diagonal matrix as
expected

Ĝ′
αβ =

(

gL
αβ 0

0 gT
αβ

)

= i2π
µ2

cv

h̄ǫ∞

∫ ∞

0

dk
k

kz
ϕα,kϕ

∗
β,k (B4)

×
(

2πk2
zJ0(kRαβ) + 4

√
π

Rαβ
Γ
(

3
2

)

kJ1(kRαβ) 0

0 2πk2
0J0(kRαβ) − 4

√
π

Rαβ
Γ
(

3
2

)

kJ1(kRαβ)

)

,

where Jn(x) is the n–th order Bessel function of the first
kind and Γ(x) is the Euler gamma function. Labels “L”,
“T” denote the longitudinal and transverse polarizations
with respect to the Rαβ axis. The expression in Eq. (B4)
depends only on the distance between the pair of QDs

considered. The integral over k is performed numeri-
cally. The result is then rotated back by an angle −θαβ

to obtain the complete coupling matrix in the original
coordinate frame. The coupling tensor between QDs α
and β then reads

Ĝαβ =

(

gL
αβ cos2(θαβ) + gT

αβ sin2(θαβ) (gL
αβ − gT

αβ) sin(θαβ) cos(θαβ)

(gL
αβ − gT

αβ) sin(θαβ) cos(θαβ) gL
αβ sin2(θαβ) + gT

αβ cos2(θαβ)

)

. (B5)
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29 J. M. Villas-Bôas, A. O. Govorov, S. E. Ulloa, Phys. Rev.
B 69, 125342 (2004).

30 B. W. Lovett, J. H. Reina, A. Nazir, G. A. D. Briggs, Phys.
Rev. B 68, 205319 (2003).

31 P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L.
Sellin, D. Ouyang, D. Bimberg, Phys. Rev. B 66, 081306
(2002).

32 D. S. Citrin, Phys. Rev. B 49, 1943 (1994).
33 L. C. Andreani, Phys. Lett. A 192, 99 (1994).
34 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
35 O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59,

5688 (1999)
36 R. Zimmermann, Proc. ICPS-2002, Edinburgh, August

2002.
37 V. Savona, Radiative coupling vs. exciton localization in

quantum wells, in Radiation-Matter Interaction in Con-
fined Sistems, L. C. Andreani, G. Benedek and E. Molinari

Editor, 101-111 (SIF, Bologna, 2002).
38 B. Krummheuer, V. M. Axt, and T. Kuhn, Phys. Rev. B

65, 195313 (2002).
39 P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L.

Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87,
157401 (2001).

40 W. Langbein, P. Borri, U. Woggon, V. Stavarache, D.
Reuter, and A. D. Wieck, Phys. Rev. B 70, 033301 (2004).

41 X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D.
S. Katzer, D. Park, C. Piermarocchi, L. J. Sham, Science
301, 809 (2003).

42 N. H. Bonadeo, Gang Chen, D. Gammon, D. S. Katzer, D.
Park, D. G. Steel, Phys. Rev. Lett. 81, 2759 (1998).

43 M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52,
11969 (1995).

44 A. Hartmann, Y. Ducommun, E. Kapon, U. Hohenester,
E. Molinari, Phys. Rev. Lett. 84, 5648 (2000).

45 M. H. Baier, S. Watanabe, E. Pelucchi, E. Kapon, App.
Phys. Lett. 84, 1943 (2004).

46 O. J. F. Martin, N. B. Piller, Phys. Rev. E 58, 3909 (1998).
47 D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M.

Rabe, and F. Henneberger, Appl. Phys. Lett. 81, 640
(2002).

48 I. Vurgaftman, J. R. Meyer, L. R. Ram–Mohan, J. Appl.
Phys. 89, 5815 (2001).

49 J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1975).

50 S. Sangu, K. Kobayashi, A. Shojiguchi, and M. Ohtsu,
Phys. Rev. B 69, 115334 (2004).


